

DRAFT - IN WORK

DRAFT - IN WORK

Math Description Engine (MDE)
Software Component Library
Programmer's Guide

(DRAFT)

September 7, 2004

NASA Learning Technologies Project

Johnson Space Center

http://prime.jsc.nasa.gov
info@prime.jsc.nasa.gov

5Math Description Engine (MDE) Library Programmer's Guide

5Section 1 Introduction

51.1 Purpose & Scope

61.2 Audience

61.3 Assumptions and Limitations

61.4 Related Documents/Resources

71.5 Feedback

8Section 2 MDE Functional Overview

82.1 High Level Functional Description

92.1.1
Text Descriptions:

92.1.2
Sonification of Graphs:

102.1.3
Visual Graphs:

112.2 Inputs

112.2.1
Mathematical Equations

112.2.1.1
Supported Equation Types

122.2.1.2
Equation Input Format

122.2.1.3
Equation Syntax

132.2.2
Data

132.2.2.1
Supported Data Types:

132.2.2.2
Data Input Formats

132.3 Outputs

15Section 3 Using the MDE API

153.1 Configuring MDE for use in your software

153.2 Accessibility and MDE

153.3 MDE Packages

163.4 Core Classes

163.4.1
Overview

173.4.2
Tutorial

173.4.2.1
Required Classes - Solver and MdeParameters

183.4.2.2
Core Functionality: Describer, Sounder, and CartesianGraph

223.4.2.3
More GUI Components

223.4.2.4
Using Components Independently

223.4.2.5
Using Components Together - Synchronization

223.4.2.6
Managing Multiple Inputs

233.4.3
Class Descriptions

233.4.3.1
MdeParameters

233.4.3.2
Solver

233.4.3.3
Describer

233.4.3.4
Sounder

243.4.3.5
SoundControl

243.4.3.6
CartesianGraph

243.4.3.7
Control Classes

25Appendices

25A.
Current Math Description Examples

26B.
Planned Upgrades

26C.
Known Bugs

26D.
Use Cases

27Glossary

28References

List of Figures

List of Tables

Code Listings

Preface

The Math Description Engine (MDE) is a software componentry library that generates accessible text descriptions, sonifications, and drawings of 2D graphs. This guide gives an overview of the capabilities and use of the MDE API.

This guide describes the alpha version of MDE. MDE is written in Java. alpha was developed with Java J2SE v1.4.2.

Math Description Engine (MDE)
Software Component Library
Programmer's Guide

Section 1 Introduction

1.1 Purpose & Scope

The main purpose of the Math Description Engine (MDE) software library is to generate accessible descriptions of graphs, i.e., MDE makes data traditionally conveyed in visual graphs available to blind and visually-impaired users by describing them with text and sound. MDE currently supports generation of graphs and alternative descriptions for 2D graphs given mathematical equations or (time-series
) data.

MDE's ability to dynamically generate alternative descriptions of graphs enables or enhances usability for blind and visually-impaired users. Text descriptions generated by MDE can be read by screen readers such as Jaws for Windows, or can be input to speech synthesizing software
 to create self-voicing applications. Sonification
 uses audible tones to represent graphed data. MDE also provides traditional "drawn" graphs with user-settable colors and line thicknesses to aid users with differing vision-impairments.

MDE's description and sonification components can be "plugged in" to various applications (standalone, client-server, etc.) and user-interfaces (pure text, GUI, etc.). For convenience, MDE provides a set of accessible Java Graphical User Interface (GUI) widgets for end-user control and display of MDE elements. MDE's graphical components can similarly be plugged into various applications.

MDE's description, sonification and graphing components can be used independently, or in combination. MDE's architecture supports solution synchronization among components when text, sound and graphing are used in combination. This document will describe MDE core components and how to use their functionality, individually and in combination.

An application which demonstrates many of MDE's capabilities (from the end-user perspective) is the MDE Graphing Calculator developed by the Learning Technologies Project (LTP) at Johnson Space Center (http://prime.jsc.nasa.gov). MDE capabilities have also been integrated with two physics simulations. An accessible rocket simulation is available within the MDE Graphing Calculator application and uses MDE's data interface. An accessible simulation "game" called MathTrax is also available at the above website. Looking at these programs will give you a good idea of MDE's current capabilities and potential for its application to other products.

Source code demonstrating how to use the MDE API is provided in demo applications in the library distribution Some of the demo applications are also presented in the tutorial section of this document.

1.2 Audience

This guide provides an overview of MDE capabilities and usage requirements which can be used by software managers/analysts/programmers to evaluate MDE for use. It provides enough detail to assist programmers in getting started with the MDE API, implementing MDE core functionality.

1.3 Assumptions and Limitations

We assume the programmer knows Java, and/or how to call Java libraries from the language you're programming in.

This document describes an alpha version of the MDE library:

· There are planned upgrades which may or may not be backwards compatible with the alpha version.

· Only the compiled-source library is available for alpha. Future distributions are likely to include source code for those wanting to extend MDE.

· There are some known bugs in the code.

· The "default" text descriptions provided by MDE are still in the experimental phase and will probably change.

1.4 Related Documents/Resources

· Compiled Source Code Distribution

· MDE Javadoc

· MDE Graphing Calculator User's Guide

· MathTrax User's Guide

· Tutorials

· LTP Project Requirements

· LTP Projects Description

· LTP Operating Plan

· NASA Open Source Software

· JSC Learning Technologies Project Web: http://prime.jsc.nasa.gov

· NASA Learning Technologies Project Web http://learn.arc.nasa.gov

1.5 Feedback

(In Work)

Please email suggestions, bug reports, use reports, and other feedback to info@prime.jsc.nasa.gov

Section 2 MDE Functional Overview

This section gives a high-level overview of MDE core functionality.

2.1 High Level Functional Description

Given a mathematical equation or an ordered set of data (or both
), MDE can describe, sonify and/or draw the resulting graph. Figure 2.1 shows some typical use scenarios for the MDE Library.

Figure 2.1 Example Uses of the MDE Library

[image: image1]
Figure 2.1 shows three example uses of the MDE Library. Example 1 shows an application requesting a text description from MDE, passing in the string equation "y=x^2". MDE returns a (string) text description "The graph is a parabola opening upward with vertex at coordinate (0,0)..." Example 2 shows an application requesting MDE graph and sonification components to draw and sonify the graph of "y=x^2". Example 3 shows an application requesting sonification of data points such as (-4,16), (-3,9), (-2,4), (-1,1), (0,0), (1,1),...., and MDE returning audio corresponding to sonification of the graphed input data.

2.1.1 Text Descriptions:

The MDE API can return descriptions in text or HTML format. MDE has two default description modes: "visual" and "math". At the time of this writing, the library does not have a Java GUI widget for displaying descriptions. Display of the text descriptions is up to the application developer.

Figure 2.2: Example MDE text description output for the equation "y=3x":

Visual mode:

Your input equation is y = 3*x. The graph of the equation is a line. It rises steeply from left to right with a slope of 3.

Math mode:

Your input equation is y = 3*x. The graph of the equation is a line. It rises steeply from left to right with a slope of 3. The graph has an inclination of approximately 71.565 degrees or approximately 1.249 radians. The x-intercept is 0. The y-intercept is 0. The ascending region is {x such that -infinity < x < infinity}. The equation is a linear equation. The domain of the equation is {x such that -infinity < x < infinity}. The range of the equation is {y such that -infinity < y < infinity}.

The HTML description output contains hyperlinks to some mathematical term definitions, and can contain links to other references, e.g.., web references, lessons, etc.

More example descriptions are in Appendix A.

2.1.2 Sonification of Graphs:

The MDE API can generate sound alone, or you can use our Java GUI Sonification Control Widgets. You can run the command line sonification demo for an example of MDE sonification generation with no graphical interface. The MDE Graphing Calculator Application demonstrates the various sonification controls that are available in the MDE Library. A screen shot of the MDE SoundControl widget is shown in Figure 2.3.

Figure 2.3 MDE SoundControl Widget

[image: image2.jpg]
Figure 2.3 shows the MDE SoundControl GUI widget, which consists of four areas. A Sonify button which lets the user start the sonification. A read-only text area which displays the abscissa and ordinate (x and y) values currently being "sounded"; a slider bar which allows manual control of the sonification back and forth across the graph domain, and a volume control slider bar.

2.1.3 Visual Graphs:

The MDE library contains a Java GUI Widget for displaying Cartesian graphs. The graph can be used with sonification turned on or off. If sonification is on, a visual trace will sweep the graph as the sonification plays out, where the position of the trace corresponds to the point(s) being sonified. For Cartesian graphs, the sweep graphic is a vertical line that moves left to right across the graph. For polar graphs, the sweep is a ball that traces the curve from theta equals zero to 360 degrees. Figure 2.4 shows a screenshot of the MDE CartesianGraph widget.

[image: image4.jpg][image: image3.jpg]
Figure 2.4 shows a Cartesian graph with a line graphed on it. The graph contains axis lines and numbered grid lines.

2.2 Inputs

2.2.1 Mathematical Equations

2.2.1.1 Supported Equation Types

MDE has the ability to classify and generate text descriptions for equations in two variables such as conic sections
. MDE sonification and graphing components may be able to handle some equations for which descriptions are not yet available. Table 2.1 shows some equation types and examples that MDE supports.

Table 2.1 Example Equations

	Equation Type
	Cartesian Form Example(s)
	Polar Form Example(s)

	NULL SET
	x-c=x
	r-2=r

	SINGLE POINT
	x^2+y^2=0,

x^2+(3-y)^2=0
	r=0

	ALL POINTS
	x=x
	r=r

	VERTICAL LINE
	x=c
	r=1/cos(theta)

	HORIZONTAL LINE
	y=c
	r=1/sin(theta)

	TWO PARALLEL LINES
	x^2=c,

y^2=c,

(x-y)^2=c
	

	TWO INTERSECTING LINES
	x^2-(x-y)^2=0
	

	SLOPING LINE
	y=3*x+4,

y=mx+b
	

	PARABOLA
	y=x^2,

y=(ay-x)^2
	r=-2a/(1+cos(theta))

	HYPERBOLA
	x^2 - y^2 = 0
	r=1/(2-2*cos(theta)+sin(theta))

	ELLIPSE
	x*y=1

x^2/a^2 - y^2/b^2 = 1
	

	CIRCLE
	x^2 + a*y^2 = 25

x^2 + y^2 = 25
	r=5

	POLYNOMIALS
	y=x^3, y=3x^5
	

	ABSOLUTE VALUE
	y=abs(x)
	

	LOGARITHM
	y=log(x)
	

	TRIG FUNCTIONS
	y=sin(x)
	

	POLAR ROSE
	
	r = sin (a*theta)

r= cos(a*theta)

MDE can describe, graph and sonify multiple equations at once, e.g., it can graph two equations on the same grid, sonify both and describe both. Multiple input management will be discussed in the tutorial.

2.2.1.2 Equation Input Format

MDE uses standard computer programming syntax for equations. The API methods take equations stored as Java String objects, for example:

String equation = "y=3x+4";

2.2.1.3 Equation Syntax

Equations can be entered in LEFT EXPRESSION = RIGHT EXPRESSION form, for example, the equation of the line y = 3x + 5 could be entered in multiple ways;

y = 3x + 5,

y - 3x = 5, and

3x = y - 5

are all valid entries to MDE.

The letters a-h, k and m are reserved for equation parameters (upper or lower case). The other letters of the alphabet may be used to represent variables. Equations can also be entered in terms of r and theta and they will be recognized as a polar form.

Table 2.2 Equation Symbols

	MDE Equation Elements
	Valid Symbols

	Cartesian or Polar Equation Parameters
	a-h, k, m (upper or lower case)

	Cartesian Equation Variables
	i,j,l,n-z (upper or lower case)

	Polar Equation Variables
	r, theta (lower case only)

Since MDE allows various symbols to be used for variables, a convention is needed to assign one variable as the dependent and one as the independent variable. MDE assigns this (for Cartesian equation variables) based on alphabetical order. The lower-order letter in the equation is assigned as the independent variable. For example, in an equation in x and y, x comes before y alphabetically, so MDE will treat x as the independent variable and y as the dependent variable.

Table 2.3 MDE Supported Operators

	Symbol
	Operation
	Example

	+
	Add
	y=3+x

	*
	Multiply
	y=3*x

	-
	Subtract
	y=x-2

	/
	Divide
	y=x/4

	^
	Exponent
	y=x^2

	=
	Equal
	y=3*x^2-1

	sqrt
	Square Root
	y=sqrt(x)

	abs
	Absolute Value
	y=abs(x)

	exp
	Exponential Function
	y=exp(x)

	log
	Natural Logarithm
	y=log(x)

	pi
	Real Number Pi
	y=pi*x

	sin
	Sine
	y=sin(x)

	cos
	Cosine
	y=cos(x)

	tan
	Tangent
	y=tan(x)

	()
	Parentheses
	y=(x/3)^2

Syntax Shortcuts

MDE correctly interprets certain omissions in syntax, e.g., a multiplication sign (*) is frequently omitted in written equations, and that omission is correctly interpreted (usually) by MDE, for example,

y=3x and

y=3*x

are treated as y equals 3 times x.

2.2.2 Data

2.2.2.1 Supported Data Types:

MDE supports generation of 2D graphs, descriptions and sonifications for time-series data, or more technically, a vector-valued function of a single variable, i.e. one or more scalar functions of a common scalar variable.
Examples: (In Work)

MDE can describe, graph and sonify multiple data plots at once. How this is handled through the API will be discussed in the tutorial.

2.2.2.2 Data Input Formats

Tab-separated columns with headings or comma-separated-value (CSV) columns with headings

MDE can read the above formats as exported from Excel, or those generated with a text editor.

(In Work)

2.3 Outputs

(In Work)

Section 3 Using the MDE API

This section describes the core components of the MDE Library and provides a tutorial for using the API to implement the core functionality. For a complete reference on the public API, consult the MDE Javadoc.

3.1 Configuring MDE for use in your software

Download - (In Work)

License - (Disclaimer, Attribution, etc.) - (In Work)

Configuration - (OS's, paths, etc.) (In Work)

Java Accessibility and Jaws - (In Work)

3.2 Accessibility and MDE

The GUI components available in MDE use Java Swing's accessibility features. Java Swing accessibility enables users of Java-capable screen readers, such as Jaws for Windows, to use the MDE GUI components.

Note, however, that MDE can generate text descriptions and sonification independent of any GUI components (see command line demo applications, for example), so MDE core functionality can be incorporated into a variety of user interfaces, including those that are self-voiced (don't require the use of a separate screen-reader). Select MDE components (GUI or non-GUI) based on your application and user-requirements.

Our set of GUI components are provided as a convenience to those not wanting to develop their own, but many developers will prefer to use their own custom GUI components to display and or control MDE-generated text and sonification.

If you use the MDE GUI components in your application, or create your own Java Swing front-end components, be aware that end-users will need to have the Java accessibility bridge installed and be using a Java-capable screen reader. If you implement your own Swing components, you need to implement the Java Accessibility API methods or your components will not be accessible. <Link to Java Accessibility API/overview - (In Work)>

3.3 MDE Packages

3.2.1 Main Packages

The MDE currently contains <n> packages, but only five are of primary concern to the application-developer wishing to implement basic MDE functionality:

	MDE packages (gov.nasa.ial.mde.*)
	Core Functional Description

	describer
	Contains classes used to obtain text descriptions of graphs

	properties
	Contains classes for setting state properties such as color options for graphical elements

	solver
	Contains classes that:

1. analyze input equations and data and generate data used by describer, sound, and graph classes.

2. manage synchronization of text, sound and graph components if they are used in combination.

3. maintain state on multiple input items (equations or data sets) if simultaneous graphs are desired or implied (multi-column time-series data).

	sound
	Contains classes used to generate and control sonification

	ui
	Contains classes for drawing and manipulating Cartesian graphs, enabling sonification controls, and enabling equation parameter manipulation.

The complete list of MDE packages is included here for reference:

(In Work)

3.4 Core Classes

3.4.1 Overview

To use the MDE library core functionality, you only need to know about a few classes. These are listed in Table 3.x by core functionality (which may be supported by multiple packages):

	Core Functionality
	Core Classes
	Packages

	MDE Properties Access
	MdeParameters
	properties

	Equation/Data Solution and Management
	Solver

Solution
	 solver

	Text Description Generation
	Describer
	describer

	Visual Graph Generation and Manipulation
	CartesianGraph

IncrementXButtons
	ui.graph

ui

	Sonification Generation
	Sounder

SoundControl
	sound

ui

MDE provides a number of prebuilt, event-driven GUI components in the ui package that you may want to use for input to or control of MDE components, and for display of MDE outputs. These are listed in Table 3.x

	Function
	GUI Component Classes
	Description

	Display of Input or Computed Data
	DataPanel
	(In Work)

	Equation Parameter Input and Control
	EquationParameterControl

NumberField
	

	Graphing
	GraphBoundsPanel

IncrementXButtons

ColorChooser

ShowColorChooserAction
	

	Sonification Controls
	SoundControl
	

MDE

	Key Controls
	Description

	KeyControls
	(In Work)

	GraphNavKeys
	

3.4.2 Tutorial

Before getting into the specifics of each core class, this section provides some context by presenting a brief tutorial on MDE API use.

3.4.2.1 Required Classes - Solver and MdeParameters

There are two classes you will always need whether you want MDE to produce text descriptions, sonifications, or drawings of graphs. Those are Solver and MDEParameters.

3.4.2.1.1 MdeParameters: Setting and storing MDE properties

MdeParameters contains property values that are used by describer, sound, graph and ui components, such as line colors and thicknesses for the graphing component, and text description modes. If you specify a filename on construction, MdeParameters will initialize properties from the file, or if no file is provided, it will use a set of default properties. MdeParameters provides getters and setters to properties so your application can access and change them.

To construct MdeParameters from properties already stored in a file,

MdeParameters myMdeSettings = new MdeParameters(filename);

where filename is the name of the file you'd like for the Mde Properties file. MdeParameters automatically looks for (and saves) this file in the application end-users's "home" directory, e.g., My Documents on Windows machines.

More will be said about MdeParameters in Class Descriptions.

3.4.2.1.2 Solver: Solution generation and management

Solver serves the function that its name implies - it takes the inputs to be graphed (equations or data) and derives solutions that can be described, sonified or graphed.

Solver also serves as a solution manager and synchronizer for the description, graphing and sonification components. We'll say more about this later, but for now, think of Solver as a service class used by describer, graph and sounder clients.

Program initialization to set up MdeParameters and Solver will look like this:

import gov.nasa.ial.mde.properties.MdeParameters;

import gov.nasa.ial.mde.solver.Solver;

...

//Create instances of MdeParameters and Solver

//Use the default MDE Properties

MdeParameters currentSettings = new MdeParameters("myAppsMdeProperties");

Solver solver = new Solver();

3.4.2.2 Core Functionality: Describer, Sounder, and CartesianGraph

3.4.2.2.1 Describer: Text descriptions of graphs

This section will show how Describer, Solver and MdeParameters are used to generate text descriptions. We'll write a command-line program that prompts the user for an equation, and uses MDE to output a text description of the equation's solution/graph.

To generate text descriptions from equations or data, you'll first ask Solver to solve the input for you, then you will request a text description from Describer.

We've shown how to initialize Solver and MdeParameters above. Describer now requires some set up. First, we create an instance of Describer, passing in the Solver and the MdeParameters object we created:

Describer describer = new Describer(solver, currentSettings);

Now, we need to tell Describer what output format we prefer. Describer has two output formats TEXT_OUTPUT or HTML_OUTPUT. The format is set using Describer's setOutputFormat() method, like this:

describer.setOutputFormat(Describer.TEXT_OUTPUT);

You can call setOutputFormat at any time to change between output formats. For this example, we'll stick with text output.

Let's say our application has an equation "y=x" input by the user, stored as a Java String variable called equation. The next step is to give equation to Solver and to ask Solver to solve it:

solver.add(equation);

solver.solve();

Now, we'll ask Solver whether our equation is describable.

If the equation is describable (the equation is valid), we'll ask Describer for the description and print it to System.out:

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");

System.out.println(description);

}

And that's basically it! You just used MDE to generate a text description from an equation input.

You probably noticed that Describer's getDescriptions() method took a String argument "visual". MDE provides the ability to change description "modes" between "visual" and "math"
. The visual mode is intended to provide a qualitative description of what the graph looks like. The math mode is intended to provide the description of the graph/solution in mathematical terms.

You may also have wondered why we had to add the equation to Solver before calling solve() and why getDescriptions() implies plurality. It is because MDE supports graphing/describing/sonification of multiple inputs simultaneously. If, for example, you want to graph, describe, or sonify equation1 and equation2 at the same time, you would first add both equations to Solver:

solver.add(equation1);

solver.add(equation2);

and then you would ask Solver to solve(). Solver will attempt to solve equation1 and equation2 and store their solutions separately. (Note: We're not talking about solving simultaneous equations here. We're talking about generating a solution for equation1 and a solution for equation2 and graphing, describing, and/or sonifying them simultaneously.)

Assuming they were both describable, calling getDescriptions(), will generate one String containing descriptions for both equations. (Requesting a graph will draw both on the same graph, requesting sonification will sonify both - harmony may ensue.)

When you want to clear the solutions in Solver, you will use the removeAll() method:

solver.removeAll();

In our example above, if you were processing equations one after the other and only wanted to describe the current equation, you would need to call removeAll() before processing the next equation, as in the following listing which is the entire CommandLineDescriber program:

Listing 3.1 A Command Line Describer Example

import gov.nasa.ial.mde.describer.Describer;

import gov.nasa.ial.mde.properties.MdeParameters;

import gov.nasa.ial.mde.solver.Solver;

import java.io.BufferedReader;

import java.io.InputStreamReader;

public class Tutorial_CommandLineDescriber {

public static void main(String[] args) {

//MDE Init:

MdeParameters currentSettings = new MdeParameters("myAppsMdeProperties");

Solver solver = new Solver();

Describer describer = new Describer(solver, currentSettings);

describer.setOutputFormat(Describer.TEXT_OUTPUT);

//Process equations

try {

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader reader = new BufferedReader(isr);

// Prompt user for input until they enter CTRL-C.

while (true) {

System.out.println("\n\nEnter equation (or CTRL-C to exit): ");

String equation = reader.readLine();

//Give Solver equation and solve

solver.add(equation);

solver.solve();

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");

System.out.println("Description: " + description);

} else {

System.out

.println("MDE could not generate a description for "

+ equation + ".");

}

//Clear Solver so next equation will be processed singly

//(we only want one description at a time)

solver.removeAll();

}

} catch (Exception e) {

System.out.println(e);

}

} // end main

} // end class Tutorial_CommandLineDescriber

3.4.2.2.2 Sounder: Sonifications of graphs

Tutorial - (In Work)

Listing 3.x A Command Line Sonifier Example

import gov.nasa.ial.mde.properties.MdeParameters;

import gov.nasa.ial.mde.solver.Solver;

import gov.nasa.ial.mde.sound.Sounder;

import java.io.BufferedReader;

import java.io.InputStreamReader;

public class Tutorial_CommandLineSonifier {

public static void main(String[] args) {

MdeParameters settings = new MdeParameters("myMDEProps.prop");

Solver solver = new Solver();

Sounder sounder = new Sounder(solver,settings);

try {

InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader reader = new BufferedReader(isr);

while (true) {

System.out.println("\n\nEnter equation (or CTRL-C to exit): ");

String equation = reader.readLine();

solver.add(equation);

solver.solve();

//Does user want to sonify equation?

if (solver.anySonifiable()) {

boolean sonflag = true;

while (sonflag) {

System.out.println("Sonifying " + equation +" from x = " + solver.getLeft() + " to x = " + solver.getRight());
sounder.sweep(3.0);

//Do they want to hear it again?

System.out.println("\n\nSonify again? (y/n): ");

String s = reader.readLine();

if (s.equals("n")) {

sonflag = false;

}

} // end while sonflag

sounder.hush();

}

solver.removeAll();

} // end while true

} catch (Exception e) {

System.out.println(e);

}

} // end main

} // end class Tutorial_CommandLineSonifier

3.4.2.2.3 CartesianGraph: Drawings of graphs

3.4.2.3 More GUI Components

3.4.2.4 Using Components Independently

3.4.2.5 Using Components Together - Synchronization

3.4.2.6 Managing Multiple Inputs

3.4.3 Class Descriptions

3.4.3.1 MdeParameters

(In Work)

3.4.3.2 Solver

(In Work)

Overview

Solver role(s)

Interface to "solution engine"

Broker between components if multiple ones are used.

Managing simultaneous display of multiple inputs

Solver as synchronizer and multiple solution manager:

Solver also serves as a solution manager/synchronizer. The description, sonification and drawing of a graph depend on the value of the graph bounds. If an application is using description, sonification and graphing in combination, we want the various components to be displaying the solution over the same bounds. If the bounds are changed by a graph controls component, for example, Solver updates the solution and the necessary components are notified of the updated solution.

There is one more function Solver performs and that is to manage multiple inputs. MDE allow simultaneous descriptions/sonification/graphing of more than one equation or data set. Solver manages solutions and state for multiple inputs.

Use

new Solver()

add

removeAll

3.4.3.3 Describer

(In Work)

Overview

Use

simple example: CommandLineDescriber.java

Using default templates

3.4.3.4 Sounder

(In Work)

Overview

simple example: CommandLineSonifier.java

Use

3.4.3.5 SoundControl

3.4.3.6 CartesianGraph

Overview

Use

3.4.3.7 Control Classes

Zoom

Equation Parameters

Appendices

A. Current Math Description Examples

MDE generates descriptions via templates. Description templates contain phrases and sentences into which specific mathematical values and descriptive terms (adjectives, adverbs) are inserted depending on the mathematical features present in a solution/graph and their values, and the mode of description desired. Some examples are listed in Table A.1

	Equation Type
	Describer mode = "visual"
	Describer mode = "math"

	NULL SET
	Your input equation is y -2 = y. The graph of the equation is a null set. The equation has no solution.
	Your input equation is y -2 = y. The graph of the equation is a null set. The equation has no solution.

	SINGLE POINT
	
	

	ALL POINTS
	
	

	VERTICAL LINE
	
	

	HORIZONTAL LINE
	
	

	TWO PARALLEL LINES
	
	

	TWO INTERSECTING LINES
	
	

	SLOPING LINE
	Your input equation is y = 3*x. The graph of the equation is a line. It rises steeply from left to right with a slope of 3.

Note that MDE has the ability to change qualitative words like "steeply" depending on the line's characteristics.
	Your input equation is y = 3*x. The graph of the equation is a line. It rises steeply from left to right with a slope of 3. The graph has an inclination of approximately 71.565 degrees or approximately 1.249 radians. The x-intercept is 0. The y-intercept is 0. The ascending region is {x such that -infinity < x < infinity}. The equation is a linear equation. The domain of the equation is {x such that -infinity < x < infinity}. The range of the equation is {y such that -infinity < y < infinity}.

	PARABOLA
	
	

	HYPERBOLA
	
	

	ELLIPSE
	
	

	CIRCLE
	
	

	RATIONAL POLYNOMIALS
	
	

	ABSOLUTE VALUE
	
	

	POLAR ROSE
	
	

	
	
	

	
	
	

B. Planned Upgrades

(In Work)

C. Known Bugs

(In Work)

D. Use Cases

(In Work)

Glossary

(In Work)

accessibility

API

BVI

description

graph

Jaws

library

MDE

screen reader

self-voicing

sonification

References

Sonification Report: Status of the Field and Research Agenda, Kramer, G., et al, International Community for Auditory Display (ICAD).

(In Work)

MDE

Library

(-4,16), (-3,9), (-2,4), (-1,1), (0,0), (1,1), ...

Some application

MDE

Library

“y=x^2”

Some application

Example 3: Request to MDE for sonification of data points.

Example 2: Request to MDE graphing and sonification widgets to graph and sonify “y=x^2”.

Example1: Request to MDE description component for a text description of the graph of y=x^2.

“The graph is a parabola opening

upward with vertex at coordinate (0,0)….”

“y=x^2”

MDE

Library

Some application

� Although the independent variable does not have to be time

� Such as the Java Speech API.

� "Sonification is the use of nonspeech audio to convey information.", Sonification Report [x]

� Future versions of MDE will allow developers to add to the default set of descriptions, i.e., develop and use their own descriptions.

� MDE can handle multiple equations, multiple data sets, or a mixture of the two.

� Technically, the equation solver should handle any equation of the form F1(y) = F2(y) where F1 and F2 are rational functions of the independent variable whose coefficients can be any legal expression in the independent variable.

� MDE is slated for open-source distribution, so eventually, customization and extension of MDE components will be possible.

� Future versions of MDE will allow the user to create their own descriptions and description modes.

�PAGE \# "'Page: '#'�'" ��

PAGE
11

[image: image5.png]